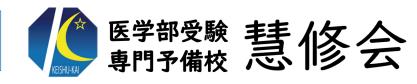
解答速報 物理



2022 年度 昭和大学 II期

典型問題が多く、どれも落とせない問題であった。高得点争いになることが予想される。

- 1 は斜面上の単振動の問題。素早く処理したい。
- 2 は気柱の振動の問題。図を利用しながら考えればすぐに解ける。
- 3 は回折格子の問題。典型的な問題であるため落とせない。
- 4 はコンプトン散乱の問題。受験生なら一度は解いたことがあるはずである。近似をうまく利用して素早く処理したい。

1

解答

$$(1) \ \frac{2mg\sin\theta}{k}$$

$$(3) t_1 = \frac{2\pi}{3} \sqrt{\frac{2m}{k}}$$

$$(5) v_1 = d\sqrt{\frac{3k}{2m}}$$

(2)
$$T = 2\pi \sqrt{\frac{2m}{k}}, \, \omega = \sqrt{\frac{k}{2m}}$$

$$(4) \ \ x = 2d\cos\sqrt{\frac{k}{2m}}t$$

(6)
$$x_1 = -\frac{1+\sqrt{7}}{2}d$$

解説

(1) 物体 A と B の一体系にはたらく斜面方向の力のつり合いより、 $2mg\sin\theta-kd=0$. したがって、 $d = \frac{2mg\sin\theta}{k}$

(2) 一体系の加速度を a とすると、運動方程式は $2ma=2mg\sin\theta-kx$. すなわち、 $a=-\frac{k}{2m}\left(x-\frac{2mg\sin\theta}{k}\right)$. ゆえに、角振動数 ω は $\omega=\sqrt{\frac{k}{2m}}$ であり、周期 T は $T=2\pi\sqrt{\frac{2m}{k}}$.

(4) 角振動数は $\omega = \sqrt{\frac{k}{2m}}$ であり、振幅は 2d であるから、 $x = 2d\cos\sqrt{\frac{k}{2m}}t$.

(5)
$$t = t_1$$
 での速度は $v_1 = 2d\omega \sin \omega t_1 = 2d\omega \sin \frac{\pi}{3} = d\sqrt{\frac{3k}{2m}}$.

(5) $t=t_1$ での速度は $v_1=2d\omega\sin\omega t_1=2d\omega\sin\frac{\pi}{3}=d\sqrt{\frac{3k}{2m}}$. (6) 物体 A と B が離れたあと、物体 A は $-d+\frac{mg\sin\theta}{k}=-\frac{1}{2}d$ を中心とする単振動をする。 物体 A には重力と弾性力が斜面下向きにはたらき、物体 B には重力のみがはたらくので、物体 A が x_1 に到達

するまでに2物体が衝突することはない。

エネルギー保存則より、

$$\frac{1}{2}k\left(\frac{1}{2}d\right)^{2} + \frac{1}{2}m\left(d\sqrt{\frac{3k}{2m}}\right)^{2} = \frac{1}{2}k\left(x_{1} + \frac{1}{2}d\right)^{2}.$$

すなわち、 $2x_1^2+2dx_1-3d^2=0$. これを解くと、 $x_1=\frac{-1\pm\sqrt{7}}{2}d$ である。 $x_1<0$ より、 $x_1=-\frac{1+\sqrt{7}}{2}d$.

2 Α

(2) $2f_A(a_2-a_1)$

(3) $\frac{a_2 - 3a_1}{2}$

(1) $2(a_2 - a_1)$ (4) $f_B = \frac{a_2 - a_1}{a_2 - 3a_1 + 2b_1} f_A$

解説

(1) 波長を λ とすると、 $a_2-a_1=\frac{\lambda}{2}$ より、 $\lambda=2(a_2-a_1)$.

(2) 音速 v は $v = f_A \lambda = 2f_A(a_2 - a_1)$.

(3) 開口端補正の値を y とすると、 $y+a_1=\frac{\lambda}{4}=\frac{a_2-a_1}{2}$ であるから、 $y=\frac{a_2-3a_1}{2}$.

(4) 波長を λ' とすると、 $y+b_1=\frac{\lambda'}{4}=\frac{v}{4f_B}$ であるから、

$$f_B = \frac{v}{4} \cdot \frac{1}{y+b_1} = \frac{f_A(a_2-a_1)}{2} \cdot \frac{1}{\frac{a_2-3a_1}{2}+b_1} = \frac{a_2-a_1}{a_2-3a_1+2b_1} f_A.$$

В

解答

 $0.340~\mathrm{m}$

解説

X 引き出すごとに経路差は 2X 大きくなる。したがって、波長を λ とすると、 $2X = \lambda$ より

$$X = \frac{\lambda}{2} = \frac{1}{2} \times \frac{340}{500} = 0.340 \,\mathrm{m}.$$

3

解答

(1)
$$d\sin\theta$$

(2)
$$d\sin\theta = m\lambda$$

(3)
$$x_m = \frac{L\lambda}{d}m, \, \Delta x = \frac{L\lambda}{d}$$

(4)
$$\lambda = 6.25 \times 10^{-7} \text{ m}$$
, 赤色

解説

- (1) 隣り合うスリットを通る光の経路差は $d\sin\theta$ である。
- (2) スクリーン上に明るい点ができるのは、経路差が波長の整数倍、つまり、 $d\sin\theta = m\lambda$ のとき。
- (3) $x_m << L$ のとき、 θ は十分小さいから、 $\sin \theta = \tan \theta = \frac{x_m}{L}$.

したがって、
$$d\cdot \frac{x_m}{L}=m\lambda$$
 であるから、 $x_m=\frac{L\lambda}{d}m$. また、 $\Delta x_m=\frac{L\lambda}{d}$ である。

したがって、
$$d \cdot \frac{x_m}{L} = m\lambda$$
 であるから、 $x_m = \frac{L\lambda}{d} m$. また、 $\Delta x_m = \frac{L\lambda}{d}$ である。 (4) $x_2 = \frac{2L\lambda}{d}$ より $\lambda = \frac{x_2d}{2L}$ であり、 $d = \frac{1.00 \times 10^{-3}}{200} = 5.0 \times 10^{-6}$ m, $L = 2.00$ m, $x_2 = 0.500$ m を代入して $\lambda = 6.25 \times 10^{-7}$ m を得る。したがって、このレーザー光は赤色である。

4

解答

(1)
$$\frac{h}{\lambda}$$

$$) \frac{h}{\lambda}$$
 (2) $\frac{h}{\lambda}$

(3)
$$x$$
 軸方向: $\frac{h}{\lambda} = \frac{h}{\lambda'}\cos\theta + mv\cos\phi$, y 軸方向: $0 = \frac{h}{\lambda'}\sin\theta - mv\sin\phi$

$$(4) \frac{hc}{\lambda} = \frac{hc}{\lambda'} + \frac{1}{2}mv^2$$

$$(5) (mv)^2 = \frac{2h^2}{\lambda \lambda'} (1 - \cos \theta)$$

(6)
$$\lambda' - \lambda = \frac{h}{mc} (1 - \cos \theta)$$

(7)
$$\tan \phi = \frac{\lambda}{\lambda'}$$

解説

(1) 波長が λ の X 線の運動量は $\frac{h}{\lambda}$ である。

(2) 波長が λ のX線のエネルギーは $\frac{hc}{\lambda}$ である。

(3) x 軸方向、y 軸方向の運動量保存の法則を表す式はそれぞれ、

$$\frac{h}{\lambda} = \frac{h}{\lambda'}\cos\theta + mv\cos\phi$$

$$0 = \frac{h}{\lambda'}\sin\theta - mv\sin\phi$$

(4) エネルギー保存の法則を表す式は、 $\frac{hc}{\lambda} = \frac{hc}{\lambda'} + \frac{1}{2}mv^2$.

(5) ①,② より、 $mv\cos\phi = \frac{h}{\lambda\lambda'}(\lambda' - \lambda\cos\theta), mv\sin\phi = \frac{h}{\lambda'}\sin\theta.$

$$(mv)^2 = \frac{h^2}{\lambda^2 \lambda'^2} (\lambda' - \lambda \cos \theta)^2 + \frac{h^2}{\lambda'^2} \sin^2 \theta = \frac{h^2 (\lambda' - \lambda)^2}{\lambda^2 \lambda'^2} + \frac{2h^2}{\lambda \lambda'} (1 - \cos \theta) = \frac{2h^2}{\lambda \lambda'} (1 - \cos \theta).$$

(6) (4),(5) \sharp \emptyset ,

$$\frac{hc(\lambda' - \lambda)}{\lambda \lambda'} = \frac{1}{2m} \cdot \frac{2h^2}{\lambda \lambda'} (1 - \cos \theta)$$

したがって、

$$\lambda' - \lambda = \frac{h}{mc}(1 - \cos\theta).$$

(7) $\theta = 90^{\circ}$ のとき、(5) の式より

$$\tan \phi = \frac{mv \sin \phi}{mv \cos \phi} = \frac{\frac{h}{\lambda'}}{\frac{h}{\lambda}} = \frac{\lambda}{\lambda'}.$$

お問い合わせは 20120-302-872

https://keishu-kai.jp/